安装自行解决
##为什么使用NumPy
文件 vectorSumCompare.py
#!/usr/bin/env python# -*- coding:utf-8 -*-__author__ = 'teng'import sysfrom datetime import datetimeimport numpy as npdef numpysum(n): a = np.arange(n)**2 b = np.arange(n)**3 c = a+b return cdef pythonsum(n): a = range(n) b = range(n) c = [] for i in range(len(a)): a[i] = i**2 b[i] = i**3 c.append(a[i]+ b[i]) return csize = int(sys.argv[1])start = datetime.now()c = pythonsum(size)print "pythonsum:", cdelta = datetime.now() - startprint "The last 2 elements of the sum", c[-2:]print "PythonSum elapsed time in microseconds", delta.microsecondsstart = datetime.now()c = numpysum(size)print "numpysum:", cdelta = datetime.now() - startprint "The last 2 elements of the sum", c[-2:]print "NumPySum elapsed time in microseconds", delta.microseconds
运行以上脚本 如python vectorSumCompare.py 10000
Numpy的优点
简单
数据量大的时候 速度快
##NumPy数组对象
调试方法shape 返回一个tuple 元组中的元素为NumPy数组每一个维度上的大小
arange 一维数组
In [15]: m = np.array([np.arange(2), np.arange(2)])
In [16]: m
Out[16]: array([[0, 1],[0, 1]])
In [17]: m.shape
Out[17]: (2, 2)
ndarray是一个多维数组对象:
分为两个部分 实际数据和描述这些数据的元数据